
www.manaraa.com

Softw Syst Model (2011) 10:369–394
DOI 10.1007/s10270-010-0154-z

THEME SECTION

A framework to support alignment of secure software engineering
with legal regulations

Shareeful Islam · Haralambos Mouratidis ·
Jan Jürjens

Received: 31 January 2009 / Revised: 7 December 2009 / Accepted: 15 February 2010 / Published online: 9 March 2010
© Springer-Verlag 2010

Abstract Regulation compliance is getting more and more
important for software systems that process and manage
sensitive information. Therefore, identifying and analysing
relevant legal regulations and aligning them with secu-
rity requirements become necessary for the effective devel-
opment of secure software systems. Nevertheless, Secure
Software Engineering Modelling Languages (SSEML) use
different concepts and terminology from those used in
the legal domain for the description of legal regulations.
This situation, together with the lack of appropriate back-
ground and knowledge of laws and regulations, introduces a
challenge for software developers. In particular, it makes dif-
ficult to perform (i) the elicitation of appropriate security
requirements from the relevant laws and regulations; and (ii)

Communicated by Marko Boškovic, Bernhard Schätz, Claus Pahl, and
Dragan Gasevic.

The work is partly supported by the German Academic Exchange
Service (DAAD) and by the EU project Secure Change
(ICT-FET-231101).

S. Islam (B)
Institut für Informatik, Technische Universität München,
Munich, Germany
e-mail: islam@in.tum.de

H. Mouratidis
School of Computing, IT and Engineering,
University of East London, London, UK
e-mail: haris@uel.ac.uk

J. Jürjens
Software Engineering (LS 14),
Department of Computer Science, TU Dortmund,
Dortmund, Germany
URL: http://jurjens.de/jan

J. Jürjens
Fraunhofer ISST, Dortmund, Germany

the correct tracing of the security requirements throughout
the development stages. This paper presents a framework to
support the consideration of laws and regulations during the
development of secure software systems. In particular, the
framework enables software developers (i) to correctly elicit
security requirements from the appropriate laws and regu-
lations; and (ii) to trace these requirements throughout the
development stages in order to ensure that the design indeed
supports the required laws and regulations. Our framework
is based on existing work from the area of secure software
engineering, and it complements this work with a novel and
structured process and a well-defined method. A practical
case study is employed to demonstrate the applicability of
our work.

Keywords Secure software engineering ·
Non-functional properties · Security requirements ·
Secure Tropos · UMLsec · Modelling regulations ·
Legal constraints

1 Introduction

Important and sensitive information is stored in software
systems, and as a result securing such systems has become
a necessity rather than an option. Naturally, a large body
of research has been dedicated to investigating the various
challenges related to securing software systems and devel-
oping approaches to support the development of secure soft-
ware systems (see [14] for an overview). As a result of
such research, it has been argued that in order to develop
more secure software systems, security needs to be con-
sidered from the early stages of the development process
and software systems developers should analyse not only the
system but also its environment [14,23]. This is important

123

www.manaraa.com

370 S. Islam et al.

since all software systems operate within an environment and
the various elements—stakeholders, users, relevant laws and
regulations—of the environment might influence the security
aspects of the system. As an example, consider a software
system for the health-care sector. The system does not oper-
ate in isolation but within the environment of the health-care
domain (in fact it might operate across a number of different
domains). As a result, the security of the system might be
influenced by its stakeholders (e.g. health-care service), its
users (e.g. doctors, nurses, patients) and relevant laws and
regulations (e.g. patient privacy laws). The latter is impor-
tant due to the sensitivity of the information usually stored
in various software systems and the need to ensure that soft-
ware systems that contain sensitive and private information
comply with the appropriate laws and regulations. As such,
there is a need to develop software systems that, apart from
meeting their security requirements, need to comply with rel-
evant regulations and laws. This demand is not only driven
by the relevant research, but most importantly by the current
industrial and commercial needs. For example, it is estimated
that in the health-care domain, organisations will spend over
$17.6 billion over the next few years to align their systems
and procedures with the Health Insurance Portability and
Accountability Act (HIPAA) [28]. Similarly, in the business
information systems domain, it is estimated that organisa-
tions will spend $5.8 billion in one year to ensure compliance
with acts such as the Sarbanes–Oxley Act [30]. In fact, it is
anticipated that almost all the domains where software sys-
tems are used will have to deal with a similar situation, where
organisations must ensure compliance with relevant regula-
tions (including relevant privacy directives, such as the EU
directive for the EU member states and appropriate national
privacy laws). As a result, the impact will be substantial for
organisations that employ software to support their critical
business process as well as manage sensitive information or
for organisations that develop software systems. A number
of those organisations are developing procedures and meth-
odologies to support the development of secure software sys-
tems and the alignment of the system’s security requirements
with relevant regulations and laws. For example, the software
company Microsoft has released an extensive set of privacy
guidelines and incorporated them into their Microsoft Secu-
rity Development Lifecycle (SDL) [35].

However, eliciting security requirements from relevant
laws and regulations is a difficult task for a number of
reasons. First of all, legal text is hard to interpret [34,41]
by people without appropriate knowledge, such as software
developers. This is due to issues such as ambiguity (when
articles in regulations can be interpreted in several ways),
cross reference (when one article from one section is related
to another article from another section), and incomplete-
ness (when regulations do not provide guidance for specific
circumstances and/or situations). Secondly, concepts and

terminology used to express laws and regulations are fun-
damentally different from those used to express software
systems security requirements [15]. On one hand, laws are
expressed in terms of rights, using concepts such as priv-
ilege, duty, liability and obligation, which control stake-
holder behaviour within a specified context [43]. On the
other hand, security requirements are expressed using con-
cepts, such as stakeholder, goal, security constraint, threat,
which aim to model system behaviour alongside a number of
security related restrictions that ensure correctness, reliabil-
ity and robustness of the software system [9]. Thirdly, the
lack of maturity of the relevant laws and of the area of secu-
rity requirements engineering introduces an extra challenge.
Information security and data privacy laws are relatively new,
unstable, and incomplete [34]. External events such as new
security threats and vulnerabilities, as well as technologi-
cal progress can trigger changes to the relevant laws. Sim-
ilarly, the area of security requirements engineering is rel-
atively new and there are still no widely agreed definitions
for a number of concepts used, nor widely accepted methods
and methodologies for security requirements elicitation and
development [14].

Within the above context, the novel contribution of this
paper is a framework that supports (i) the elicitation and
analysis of security requirements from relevant regulations
and laws; and (ii) the development of a design that satisfies
these requirements. The presented framework is based on
previous work from the areas of security requirements engi-
neering [19,20] and model-based security engineering [23].
In particular, the framework supports the integration of the
Secure Tropos methodology, to support the elicitation and
analysis of security requirements, and UMLsec, to support
the development of a design to satisfy the elicited security
requirements. The selection of these two approaches is based
on a number of reasons. First of all, the Secure Tropos meth-
odology uses the same concepts and notations throughout
the development process [19]. This is important in our work
since it allows us to track specific security solutions to the
various elicited security requirements. Moreover, the mod-
elling language of the Secure Tropos methodology is easily
extensible, so it provides us with an ideal vehicle to extend it,
in order to support the modelling of the legal concepts neces-
sary for our work. On the other hand, UMLsec is supported
by a number of secure design diagrams that allow the analy-
sis of appropriate security properties during the design stage.
This is important in our work since it enable us to evaluate the
developed solutions against a number of security properties
identified on the relevant laws and regulations. Our frame-
work has four main components: (i) a modelling component
to support the interpretation of legal texts and the deriva-
tion of legal rights, correlatives, and legal constraints; (ii)
an elicitation component to support elicitation of security-
constraints and analysis of security requirements and related

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 371

legal constraints; (iii) an analysis component to support threat
and non-compliance analysis; and (iv) a design component
to support the design of a system that fulfils the elicited and
analysed security requirements. To demonstrate the applica-
bility of our work and validate it within the legal domain,
we consider a case-study based on the directives that focus
on the information security law from the European Union
(EU) Information Society Legislation [21] and the associate
German national law that implements the directives [5]. We
have selected the above since their details are publicly avail-
able and since they are the relevant directives and laws for
the case studies we work on. However, we expect that our
framework is suitable for the analysis of other national laws.

The paper is structured as follows. Section 2 provides
a detailed description of related work for secure soft-
ware system development considering regulations. Section 3
describes the components of our framework. Section 4
describes the development process supported by the pre-
sented framework, while Sect. 5 demonstrates the applicabil-
ity of our proposed approach through a case-study based on
an industrial context for service based software development.
As mentioned above, in the case study we combine legal text
from directives 95/46/EC and 2002/58/EC of the European
Commission (EC) Information Society legislation [21] and
the German Federal Data protection Act [5]. Finally Sect. 6
concludes the paper and presents directions for future work.

2 Related work

A number of researchers [3,12,14,16,23,29,31–33] argue
for the need to consider security as early as possible during
the development process. Towards this direction a number of
research results have been presented in the literature. Chung
et al. [26] apply a process-oriented approach to represent
security requirements as potentially conflicting or harmoni-
ous goals. The proposed framework, which is called the NFR
(Non-Functional Requirements) framework, represents and
uses security requirements as a class of non-functional
requirements and it allows developers to consider design
decisions and relate these decisions to the represented
non-functional requirements. MOQUARE (Misuse-Oriented
Quality Requirement Engineering) [2] provides a framework
to analyse Non-Functional Requirements, including security.
The framework accepts as an input a functional descrip-
tion together with a system’s business and quality goals (in
which security is included). With the aid of misuse cases
and NFR trees, the framework allows developers to analyse
relevant NFRs. Similarly, IESE—NFR [1] is a fully pre-
scribed method used to specify NFRs. Inputs are Functional
Requirements, use cases, and the NFR tree, while the output
of the analysis using the method is a list of needed NFRs,
including security requirements. Mead et al. [29] propose

the Security Quality Requirements (SQUARE) method for
eliciting and documenting security requirements, whereas
Haley et al. [6] provide an approach for security require-
ments elicitation, specification and analysis. Mellado et al.
[10] present a Common Criteria based security requirements
engineering process (SREP), where several Common Crite-
ria constructs have been employed (e.g. security functional
components, protection profile, and security assurance com-
ponents) for eliciting, categorising, and prioritising security
requirements. SREP is different from SQUARE in that it inte-
grates the Common Criteria and Information Security stan-
dards such as ISO/IEC 27001 into the steps when eliciting
security requirements. Mouratidis et al. [17] present Secure
Tropos for eliciting security requirements in terms of secu-
rity constraints. Islam et al. [37] present an approach related
to security risk and its impact to software quality attributes
and how eliciting security requirements at an early stage can
address such attributes. Moreover, a framework for repre-
sentation and analysis of security requirements is presented
by Haley et al. in [7]. It allows the security engineer to rep-
resent and analyse security requirement. Mouratidis et al.
[18] further extended Secure Tropos with the notion of secu-
rity attack scenarios, where possible attackers, their attacks
and system resources that can be attacked are modelled.
A different line of work is based on the extension of the Uni-
fied Modelling Language (UML). Jürjens proposes UMLsec
[23,24], an extension of the Unified Modelling Language
(UML), to include the modelling of security related features,
such as confidentiality and access control. Although all of
these works are relevant to our work, they do not consider the
analysis of legal texts when specifying security requirements.

On the other hand, a number of researchers have ana-
lysed privacy regulations to derive rights and obligations of
actors to perform some actions [11,34,40–42]. Breaux et al.
[40] consider activity, purpose, and rules to extract rights,
obligations and constraints from the legal texts. Rights and
obligations are the actions that stakeholder are permitted and
required to perform. In this work, extracted rights and obliga-
tions are stated into restricted natural language statements to
depict discrete activities, in an application context, based on
a semantic parameterization process [40,42]. The approach
was further extended to identify “allow” and “deny” rules
and exceptions on these rules, which prioritize access rights
and obligations relevant to access sensitive information of
a system [41]. Islam et al. [38] employ the pattern based
approach of Breaux et al. to extract constraints and to com-
bine them with the policies that derive from the Informa-
tion Security standard ISO/IEC 27001:2005. This approach
contributed to the integration of these constraints into
UMLsec models, along with relevant stereotypes, so that
a design is developed that supports appropriate legal con-
straints. Darimont et al. [36] propose regulation model-
ling based on the Goal Oriented Requirement Engineering

123

www.manaraa.com

372 S. Islam et al.

(GORE) methodology by KAOS. In this work, regulation
documents are incrementally transformed into goal, object,
agent, and operation model. However, the short representa-
tion of the approach makes it difficult to understand how the
transformation takes place in order to validate the approach.
Ghanavati et al. [39] proposed a compliance framework
based on a user requirements notation, which models busi-
ness processes and links them to regulations. In this work,
the i* goal oriented requirement language is used to model
goals and actions extracted from regulations. Moreover, the
framework facilitates the establishment of a traceability link
between law and requirements. Siena et al. [4] focused on
Hohfeld’s legal taxonomy as a basis for a systematic process
to support decision making from regulations. May et al. [27]
employed access control techniques to extract privacy related
elements from legal texts.

These approaches discussed above are important but they
also demonstrate a number of limitations. Most of these
approaches consider just the permitted and required actions
of a stakeholder. Nevertheless, according to the legal tax-
onomy by Hohfeld [43], considering only permitted and
required actions is not sufficient to represent stakeholder
legal rights. In contrast, our framework supports the analysis
of legal text and the extraction of a number of concepts based
on Hohfeld’s legal taxonomy, such as legal privilege, claim,
power, immunity and their correlatives duty, no-right, liabil-
ity and disability. Moreover, the above mentioned approaches
fail to specify a process where: (i) the interpretation of legal
texts is aligned with the specified (security) requirements; (ii)
requirements can be traced in the developed design; (iii) an
analysis takes place to identify potential risks for non-com-
pliance to a specific application context.

3 Components of the proposed framework

The proposed framework allows us to treat elicitation and
analysis of requirements from regulations similarly to the
goal analysis in requirements engineering. It also supports
the development of a design that fulfils the requirements that
are elicited. It contains four components:

1. A Modelling Regulation component, to support the inter-
pretation of legal texts and the derivation of legal rights.
This component supports the analysis and modelling of
regulations based on the elementary concepts classified
by Hohfeld [43]. It also supports the extraction of pos-
sible legal rights (e.g. claim, privilege, power, immu-
nity) and their correlatives (e.g. duty, no-right, liability,
disability), and the distinction of legal constraints, from
the extracted legal rights and correlatives, with the help
of a pattern based approach (described in next section),
a common set of rules (also described in next section),
and the secure Tropos language.

2. An Elicit Security Requirements component based on the
Secure Tropos analysis techniques to support elicitation
of security-constraints, and analysis of security require-
ments and legal constraints. In particular, based on the
models derived from the previous component and a
security analysis of the system under development,
this component supports the alignment of the security
requirements with relevant legal constraints.

3. A Security Requirements Analysis component based
on a scenario-based analysis method, which supports
the analysis of threat environment and non-compliance
issues. In particular, potential security attacks, which
might introduce non-compliance issues in the system
under development, are identified by analysing mali-
cious goals, task, and related threats of potential attack-
ers. Such analysis enables software developers to further
refine the system’s security requirements and align them
to relevant regulations in order to countermeasure poten-
tial regulation-based threats.

4. A Secure System Design component to support the design
of a system that fulfils the identified security require-
ments and legal constraints. Based on the principles
of UMLsec and Model Based Security Engineering
(MBSE), this component enables software system devel-
opers to design the system in a way that its regulation-
related security requirements can be traced back to the
appropriate regulations.

Figure 1 graphically illustrates the components of the pro-
posed framework along with required inputs and artefacts
produced from the framework components. Moreover, the
figure illustrates the foundational approach that we have used
to support the specific component; and the development stage
where each component is applied. In the following sections,
we further describe each one of the framework’s components.

3.1 Modelling regulation component

The first component aims to elicit legal constraints from rele-
vant legal texts. The fundamental legal conceptions proposed
by Hohfeld [43] classified legal rights in several elementary
concepts including privilege, claim, power, immunity, duty,
no-right, liability, and disability, which are organised in oppo-
sites and correlatives. These elementary concepts are adopted
in our work to support the elicitation of legal constraints. The
word legal right is often used broadly to cover legal relations.
However legal thinking can never be truly accurate unless
we distinguish different kinds of rights. Therefore, we have
based our work on this classification of rights, because this
provides an opportunity to precisely think about law. The
taxonomy is grounded on the concept of legal right, which
is one’s assenting claim against another or a claim for an
action. It can be defined broadly as entitlement to perform

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 373

modelling
regulation

analysis
security req.

elicit security
req.

design secure
system

no-rights

goals

legal rights

correlatives

Legal
text

business goals,
features,requirements

specification

security
constraints

threat
model

UMLsec
diagrams

attack
scenarios

actor
diagrams

legal
constraints

refined
req.

<<stereotype>>

Secure Tropos

regulation analysis, security requirement elicitation & analysis secure design

legal taxonomy,
pattern,rule

UMLsec

artefacts

component

input

legends

Fig. 1 Overview of the proposed framework

certain actions or be in certain states, or entitlement that oth-
ers perform certain actions or be in certain states. The more
perceptive mean of right is claim, which is the entitlement
for a person to have something done by another person, who
has therefore a duty of doing it. For instance, if Tom is hold-
ing a bank account and he raises a claim to view his account
balance, the Bank has a duty to provide the data related to
his bank account. Power is one’s affirmative control over a
given legal relation against another or over an action on an
object. An actor holding power has the legal ability to per-
form certain actions or to alter legal relations within a context.
Privilege is the entitlement of one’s freedom from the right
to discretionally perform an action or to claim for another
[4,13,43]. Two rights are correlatives [43], if one right can-
not exist without the other. Dealing with correlative duty,
liability, and disability, requires looking at the situation from
the involved actors’ point of view. Liability is one’s respon-
sibility for carrying out a specific action. It differs from duty
in the sense that duty does not require any legal power. For
instance, when Tom provides personal data for opening a
bank account, the bank has the liability to protect the data. On
the other hand, disability, in the context of legal regulations,
is an actor’s lack of legal power to accomplish an action that
another actor with legal power can accomplish. Dealing with
correlative no-right, requires looking at two different situa-
tions from the point of view of the same person or action in all
cases, irrespective if the person has the right or no-right. The
term no-right denotes absence of right on the part of an actor
to perform certain action. Finally, opposition means that the
existence of a right excludes its opposite (in the same way
as “claim” opposes “no-right” and “power” opposes “dis-
ability”) [13]. The object of right specifies possible activities

of an actor controlled from regulations [4]. Such activities
describe behaviour of an actor or identify the purpose for an
action. In requirements engineering, this identified purpose
can be treated as a goal of an actor. The conceptual view of the
legal rights to model the laws and regulations by modelling
regulation is depicted in Fig. 6 (Sect. 4.1).

The fundamental legal concepts provide a high-level
abstraction. However, a comprehensive relationship needs
to be established among the involved stakeholders and their
high level legal rights, so that regulations can control the
stakeholders’ behaviour. To accomplish this task, our frame-
work correlates the above high level legal abstractions with
abstractions derived from the security requirements engi-
neering area, and in particular the Secure Tropos modelling
language. This allows us to identify an actor’s legal rights and
correlatives by modelling regulations and align them with the
security requirements of the system under development. To
assist us in this process, we employ, as discussed above, natu-
ral language patterns and a set of rule sets so that regulations
are analysed in terms of requirements engineering concepts
such as goal, actor, task, and resource. Then, we derive an
actor’s legal rights and correlatives based on the appropri-
ate requirements engineering concepts. The idea of natural
language patterns has been extensively used to analyse reg-
ulations [40–42]. In our work we make use of the activity
and purpose patterns presented in previous work [40] and
introduce the object pattern to extract possible legal rights
and their correlatives from legal text. This enables us to con-
sider beyond permitted and required actions of the existing
contributions and therefore derive a precise analysis of
legal text within any application context. Below, we briefly
describe these patterns:

123

www.manaraa.com

374 S. Islam et al.

• Activity pattern: The Activity pattern specifies possible
actions, defined by legal text, for a subject who performs
the action on an object within a specific context. The
pattern identifies the actors (who) and possible actions
(what) on an object (whom). These actions are the objects
of actor’s legal rights and correlatives. Therefore, the
main focus of the pattern is to identify the behavioural
and if possible, productive action of an actor so that the
actor’s necessary legal rights and correlatives can be dis-
tinguished. A behavioural action states the type of behav-
iour that an actor performs, while a productive action
states the results produced by the behaviour performed by
actor. For instance the sentence “John is studying hard”
states John’s behaviour and therefore it is treated as a
behavioural action, while “John obtains good grades” is
the result of the previous behaviour (i.e. the result of
studying hard) and therefore it is considered a produc-
tive action. Nevertheless, depending on the situation the
interpretation of the legal rights from the same legal text
can be diverse. As such, this pattern facilitates the deter-
mination of the depending strategies among actors with
possible actions from legal rights and correlatives on an
object.

• Purpose pattern: Every action has an objective that an
actor intends to achieve. This objective is the goal of
the actor. This pattern mainly identifies the high level
goals for an action performed by the actor. Furthermore
it also identifies the goals derived from relevant regula-
tion. Therefore the pattern provides the strategic rationale
behind each action performed by an actor and the legal
text that controls this action.

• Object pattern: The pattern describes the properties of an
object by identifying object type, location and measur-
ing parameters. Generally objects are the critical system
assets such as data, physical device, and services of the
system. An Actor depends upon this object to perform an
action. Every object has a specific location from where it
can be accessed or processed. For example, some personal
data might be stored on a centralised server. Measuring
parameters are the constraints from a legal text used to
measure the safeguards of an object, such as risk level,
security level, and technical measure, to assure sufficient
protection of the object from any undesirable situations.

These patterns are combined with a common set of rules [40]
to analyse and model regulations. Generally, these rules ease
capturing behavioural action of an actor. The rules are:

• Subjects on legal texts are generally represented by nouns
and indicate who performs an action;

• Verbs on legal texts usually represent actions such as
access, disclose, process, transmit;

• Objects, usually found towards the end of a legal text,
indicate different attributes such as object location and
measuring parameters;

• Words such as who, that and which followed by verb dis-
tinguish nouns from the rest of the phrase;

• Normative phrases of legal text such as shall, shall be,
may, must, and so on generally determine legal rights
such as claim, power, duty, and obligation, which may
be employed in strict sense depending on the application
context. On the other hand, negation of the normative
phrases, such as shall not, may not, may not require, must
not, and so on, generally determine no-right and disability
of actions;

• High level goals can be obtained by rationalising the rea-
sons why the regulation is introduced as well as why an
actor performed a specified action. Based on the object
and its related attributes, an actor’s dependency assump-
tion on the object can be employed to identify the actor
goal;

• Conditional keywords such as if, except, unless, and so
on specify preconditions and post-conditions among legal
rights and correlatives.

3.2 Elicit security requirements component

The second component of our framework supports the elic-
itation of security requirements and their alignment with
appropriate regulations. Our analysis is based on the Secure
Tropos analysis techniques, an extension of Tropos method-
ology. Tropos adopts the i* modelling framework [14,20],
which uses the concepts of actors, goals, tasks, resources,
and social dependencies for defining the obligations of actors
(depender) to other actors (dependee). Secure Tropos intro-
duces security related concepts (e.g. security constraint,
secure dependency, secure goal) to the Tropos methodology,
to enable developers to consider security issues throughout
the development life cycle. A security constraint is defined
in Secure Tropos as a restriction related to security issues,
such as privacy or integrity, which influences the analysis
and design of the software system under development by
restricting some alternative design solutions, by conflicting
with some of the requirements of the system, or by refining
some of the system’s objectives [20]. Effectively, security
constraints represent in Secure Tropos the initial high level
security requirements of a system and they are elicited from
a number of sources including the stakeholders and users of
the system as well as domain and security experts.

Secure dependencies introduce security constraint(s) that
must be fulfilled for the dependency to be satisfied. Secure
Tropos uses the term secure entity to describe any goals, tasks
and resources related to the security of the system. A secure
goal represents the strategic interests of an actor with respect
to security. Secure goals are mainly introduced in order to

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 375

achieve possible security constraints that are imposed to an
actor or exist in the system. However, a secure goal does
not particularly define how the security constraints can be
achieved, since alternatives can be considered. The precise
definition of how the secure goal can be achieved is given
by a secure task. A secure task (also known as secure plan)
is defined as a task that represents a particular way for sat-
isfying a secure goal. A resource that is related to a security
entity or a security constraint is defined as a security resource.
As an example, consider Fig. 2, where three actors are mod-
elled along with their dependencies. In Secure Tropos the
presented model is known as security enhanced actor model
and it is used in the early stages of the process to model
the environment and the security requirements of the sys-
tem under development. In particular, in this example, the
Patient actor depends on the Doctor actor to satisfy the goal
Receive Appropriate Health Care. However, for the Doctor
actor to support the patient in that goal, the Doctor needs to
Obtain Patient Information. However, relevant health care
laws restrict the Doctor on sharing the information obtained.
This is modelled using a security constraint Share Informa-
tion Only if Consent is Obtained. Moreover, according to
the methodology each of the actors is further analysed. In
this example, we provide a very short analysis of the Doctor
actor, according to which the main goal of the Doctor is to
Develop a Care Plan for the patient. In doing so the Doctor
needs to consult various members of the medical team. How-
ever, as derived from the previous analysis, consent should
be obtained to share any patient information. Therefore a
secure goal is imposed to the Doctor actor to Obtain Patient
Consent and an example of a secure task is provided on how
this can be achieved. Later in the process the results of this
analysis is input to the analysis of the system to determine
security constraint from the users and stakeholders of the sys-
tem. Detailed description about Secure Tropos and further
examples—based on real-life case studies—can be found in
[17].

In the framework presented here, we propose to map legal
constraints (restricted legal rights and correlatives) with the
Secure Tropos security constraints so that security require-
ments that are elicited can also address legal concepts. This
facilitates to identify and analysis security and legal depen-
dencies in the system environment. This is because; in some
occasions the actor (and/or the system) cannot satisfy their
goals and/or security constraints without the assistance from
another actor (and/or system). For example, a data process-
ing operator actor cannot process data without the data being
in the system. For this to happen, the data processing opera-
tor depends on the data controller to acquire the data for the
system. In turn, the data controller depends on the customer
to provide that data. Thus the elicitation in fact takes place
at two different levels. At the first level, the initial elicitation
of the requirements is based on high level security and legal

constraints. At the second level, the requirements that are
elicited are furthered analysed within a threat environment
by identifying how requirements are endangered by security
attacks. This takes place in the component of our framework
which is described in the following section.

3.3 Security requirements analysis component

The main goal of this component is to confirm whether
elicited security requirements address the possible security
threats. We employ security attack scenarios, an enhanced
Secure Tropos model, which aims to analyse how the sys-
tem copes with different kinds of security attacks [18]. We
have opted for a scenario-based approach because scenarios
can be integrated with our framework and can be adapted to
the framework’s notation and concepts. Attacker goals and
tasks are identified and analysed to understand why and how
an attacker might attack the system. This leads to a better
understanding of how possible attacks can be prevented. In
a Security Attack Scenario an attacker is depicted as an actor
who aims to break the security of the system. The attacker
intentions are modelled as goals and tasks and their analysis
follows the same reasoning techniques that the Secure Tro-
pos methodology employs for goal and task analysis. Attacks
are depicted as dash-lined links (called attack links) that con-
tain an “attacks” tag, starting from one of the attackers goals
and ending to an attacked resource. The scenario differenti-
ates between internal and external actors. A security attack
scenario is graphically represented as shown in Fig. 3, taken
from [18]. A circle (with parallel line on the top) represents
an actor, a square represents a resource, a rounded square
represents a goal and a polygon represents a plan. More infor-
mation can be found in [18].

Note that, no-right and disability of the extract legal rights
may influence how an attacker might employ illegal activi-
ties to attack the system. When an actor without any right
performs any action, then non-compliance issues might arise
within the system environment. Therefore, our framework
considers non-compliance issues within the security attack
scenario approach. We further use the concept of secure
capability [14] that enables us to refine the initial high level
security requirement related to that attack and make it more
specific. This in turn allows us to address the attack includ-
ing non-compliance issues. To support a detailed design of
the system to fulfil the identified requirements, we employ
Model-Based Security Engineering (MBSE) and in particu-
lar UMLsec, as explained in the next section.

3.4 Secure system design

The final component of the framework enables the develop-
ment of a secure design aligned with the legal and secu-
rity requirements identified and analysed by the previous

123

www.manaraa.com

376 S. Islam et al.

Fig. 2 Example of a Secure Tropos model

Fig. 3 Example of the graphical representation of a security attack scenario

components. In UMLsec, recurring security requirements,
such as secrecy, integrity, and authenticity are offered as
specification elements by the UMLsec extension [23]. These
properties and the associated semantics are used to evalu-
ate UML diagrams of various kinds that contribute to the
architectural and detailed design of the system and indicate

the possible security vulnerabilities. One can thus verify that
the desired security requirements, if fulfilled, enforce a given
security policy. One can also ensure that the requirements are
actually met by the given UML specification of the system.
The extension proposed by UMLsec, is given in form of a
UML profile using the standard UML extension mechanisms.

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 377

Table 1 UMLsec stereotypes and associated tags

Stereotype Base Class Associate ste-
reotypes

Tags Tag value Constraint Description

Legitimate
process

Subsystem «provable»,
«integrity»
«authenticity»,
«secure links»

Action, right,
adversary

{collect, process,
use}{privilege,
claim, power,
duty, liabil-
ity}{no-right,
disability}

Only permitted
legal activities

Enforce
legitimate
processing in
application
context

Data filter Node, link «guarded> Action, resource,
adversary

{monitor, filter},
{data, service},
{deplete, flood}

monitor data &
filter (if require)

Enforce
monitoring &
filtering data in
communication
& receipt

Stereotypes are used together with tags to formulate security
requirements and assumptions on the system environment.
For instance, existing UMLsec stereotypes support security
related information including security assumptions (such as
the «Internet» stereotype considering security properties of
the physical layer of the system), security requirements (such
as the «secrecy» stereotype considering security restrictions
on the logical structure of the system), and security policies
(such as the «secure links» stereotype supposed to be obeyed
on different parts of the system) [23]. The tags defined in
UMLsec represent a set of desired security properties under
the stereotypes. For instance, adversary tag under the «secure
links» stereotype specifies possible types of adversary that
may threat the links based on some logical condition from
previous knowledge of the adversary. Constraints give crite-
ria that determine whether the requirements are met by the
system design, by referring to precise semantics (discussed
below).

3.4.1 UMLsec stereotypes

The definition of UMLsec stereotypes allows the integration
of security requirements into design diagrams and it sup-
ports model checking and automated tool implementation. A
detailed explanation of the stereotypes defined in UMLsec is
outside the scope of this paper and it can be found in [23].
The framework presented in this paper extends the existing
set of stereotypes and it enhances the verification with stereo-
types related to legal concepts. This enables us to verify both
static features and simple dynamic features combined with
security and legal stereotypes within a system environment.
In particular, two new stereotypes («legitimate process» and
«data filter») are defined to support legal concepts. These ste-
reotypes, developed as UML model elements, add security
and legal concepts within UMLsec design diagrams. Table 1
provides a summary of these newly defined stereotypes and
their tag values and constraints.

Explanation of «legitimate process» stereotype

This stereotype mainly considers the legal rights and it is
used to associate correlatives to regulate the actions per-
formed by the actor in a subsystem. Actors, their possible
actions, objects, and security and legal constraints identified
from the previous components are modelled by the UMLsec
diagrams along with the stereotypes. For instance, within a
subsystem, one can define the behaviour of the system com-
ponents by defining behaviour of each object. If the object
is an actor, then actions performed by the actor are regulated
by the extracted legal rights. We can model these behaviours
within UMLsec diagrams such as class and deployment dia-
gram. The stereotype has an associate {adversary} tag, which
may have values of the form (T, C), where T denotes adver-
sary type and C denotes logical condition, to support the non-
compliance issues due to no-right and disability, in addition
to the existing threats.

Explanation of «data filter» stereotype

This stereotype mainly ensures availability of objects, par-
ticularly data and service, required to perform an action. The
main focus is to monitor and, if required, filter any mali-
cious traffic within a communication link and any unneces-
sary request received by the targeted node. Two new abstract
threat elements “deplete” and “flood” along with the exist-
ing threats of the UMLsec attacker model are employed to
model a specific type of adversary in a given application
context. Deplete represents the possibility that an adversary
may exhaust the resources of the targeted node, whereas
flood represents the possibility that an adversary may over-
flow the targeted communication link. Thus, we extend the
security analysis of UML diagrams defined in [23] such that
Threats A(s) is a function that is given an adversary type A
and a stereotype type s and that returns a subset of {delete,
read, insert, access, deplete, flood}. Threats A(s) specifies the
threat scenario associated with an adversary type A against a

123

www.manaraa.com

378 S. Islam et al.

Table 2 Threat from the default attacker

Stereotype Threatsdefault

Internet {delete, read, insert, flood}

Server node {access, deplete}

LAN {delete, read, insert, flood}

component or link stereotype s. This allows us to derive basic
concrete threats from the abstract threats and model and ana-
lyse the possible adversary behaviour and issues related to
non-compliance. Table 2 shows the threats that arise from
the default attacker against various kinds of communication
links and system nodes. The main difference between the
two newly defined stereotypes is that «legitimate process»
mainly focuses on the actor’s behaviour of actions regulated
by the laws and regulations and « data filter» mainly focuses
on the prevention of attacks in particular attacks relating to
the Denial of Service (DoS) within the system environment.
However, these newly defined stereotypes support the fulfil-
ment of both security goals and legal goals.

3.4.2 Architectural and detailed design

As mentioned, in UMLsec it is possible to evaluate vari-
ous kinds of UML diagrams considering the security proper-
ties and associate semantics. In our framework, we employ
architectural and detailed design of the system to support
the secure system design. Architectural design mainly deals
with the definition of the system’s global architecture in
terms of subsystems along with security and legal require-
ments, actors, and their responsibilities to fulfil the corre-
sponding security and legal goals. Detailed design aims to
specify each architectural component in further detail, in
terms of inputs, outputs, control, and other relevant informa-
tion. Therefore diagrams under the architectural and detailed
design support modelling of the system within the model-
based development. The goal is to increase the quality of the
software system while keeping the implementation cost and

the time-to-market bounded. In MBSE [23–25], recurring
security requirements (such as secrecy, integrity, authentic-
ity and others) and security assumptions on the system envi-
ronment, can be specified either within a UML specification
or within the source code (Java or C) as annotations. The
associated tools [24] generate logical formulas formalizing
the execution semantics and the annotated security require-
ments. These tools support verification of the most impor-
tant security requirements, which can be directly used in
the model, together with their formal definitions. Automated
theorem provers and model checkers automatically establish
whether the security requirements hold. If not, a Prolog-based
tool automatically generates an attack sequence violating the
security requirement, which can be examined to determine
and remove the weakness. This way we encapsulate knowl-
edge on prudent security engineering as annotations in mod-
els or code and make it available to developers who may not
be security experts. Since the analysis that is performed is
too sophisticated to be done manually, it is also valuable to
security experts.

To provide a concrete illustration of the above ideas and
how they are utilised in our framework, we consider deploy-
ment diagrams, as a part of architectural design, which are
used to describe the physical layer of a system. We use them to
check whether the security requirements on the logical level
of the system are enforced by the level of physical security,
or whether additional security mechanisms (such as encryp-
tion) have to be employed. Assume for example that we have
a business application, part of an e-commerce system, which
is supposed to be realized as a web application. The pay-
ment transaction involves transmission of data to be kept
secret (such as credit card numbers) over Internet links. This
information on the physical layer and the security require-
ment is reflected in the UML model shown in Fig. 4. We
then use the stereotype «secure links» to express the demand
that security requirements on the communication are met by
the physical layer. More precisely, for each dependency ste-
reotyped secrecy between subsystems or classes on different
nodes n, m, and any communication link between n and m

Fig. 4 UMLsec deployment diagram

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 379

Fig. 5 Steps and activities of the proposed framework

with some stereotype s, the threat scenario arising from the
stereotype s with regard to an adversary of a given strength
should not violate the secrecy requirement on the communi-
cated data. We note that in the given diagram, this constraint
associated with the stereotype secure links is already vio-
lated when considering standard adversaries, because plain
Internet connections can be eavesdropped easily, and thus the
data that is communicated does not remain secret. For this
adversary type, the stereotype «secure links» is thus applied
wrongly to the subsystem, which is pointed out automatically
by the UMLsec tools.

4 Development process

The previous section described the components of our frame-
work. In this section, we describe the process followed in
order to arrive at a secure software system design that com-
plies with appropriate legal regulations. Figure 5 depicts the
steps and underlying activities involved in the development
process. The process is initiated by identifying goals and legal
rights from the relevant regulation and by modelling the sys-
tem context. Therefore, before analysing the regulation, rele-
vant laws need to be selected based on the initial system under
development artefacts such as business specification, appli-
cation scope/context, stakeholder expectations, and require-
ments. In particular, regulations are initially mapped into
different Secure Tropos elements and appropriate legal con-
straints are identified with the aid of Secure Tropos mod-
els. Further analysis, including non-compliance issues, takes
place using the security attack scenario models. Finally a
secure design is developed and validated with the aid of
UMLsec models. The process is divided into four main steps,
each one discussed in the following sections.

4.1 Modelling regulation by Secure Tropos

The first step of the process aims to analyse the laws and reg-
ulations that were identified and to map legal requirements
to Secure Tropos concepts, in order to support analysis of
these requirements. In doing so, the first component of our
framework is employed to support reasoning of compliance,
when initial security requirements are elicited, and to assist
the analysis of the requirements, based on non-compliance
assumptions posed by security threats. This type of analysis
goes beyond the usual ideas of only considering obligation
and permission. An overview of the activities involved at this
step is given below:

• Identify and refine goals: This activity describes both
regulation related goals, by stating why the regulation is
introduced based on the relevant legal source document,
and actor related goals, by stating why an actor performs
an action within the application context. Purpose pattern,
described in the previous section, along with the business
specification and application scope assist to identify the
goals. Goals are initially identified from high level objec-
tives and they are subsequently refined to more precise
goals and sub-goals. Furthermore, links between regu-
lations and actor goals are established to indicate how
an actor’s goals support the satisfaction of the regulation
goals (in case they do). In our framework, and consistent
with the Secure Tropos definition, an actor’s goals repre-
sent the strategic interests of the actor within the system
environment. It is worth mentioning that the purpose of
the specific information security law is usually treated
as the main goal, and goals from different sections, arti-
cles or related annex are usually refined into several sub-
goals. However, consideration should be given only to the

123

www.manaraa.com

380 S. Islam et al.

Fig. 6 Conceptual view of the modelling regulation

sections, articles or annexes that are relevant within the
application context, so that scope of the goals and their
elaboration confine with the application.

• Identify actors, associate tasks and resources: This
activity identifies the actors, their performed tasks, and
required resources in the system environment. Gener-
ally actors perform specific tasks and they require certain
resource to accomplish the task in order to fulfil the goal.
Note that we use tasks to represent the actions performed
by actors regulated by the legal rights. Therefore, as men-
tioned, legal rights are concerned with the categorisation
of actions into behavioural and productive actions. Note
that usually, it specifies more the behavioural actions of
the actor. These rights might be actor freedom or obli-
gation to perform the task or certain restriction not to
perform the task. We employ the activity pattern and
the common rule set, described in previous section, to
identify actors and their associate legal rights to per-
form specific tasks. Complementary, the object pattern is
employed to identify possible resources, its type, resource
owner and location based on the application context. The
main concern when dealing with resources is whether the
resource is available, and the actor has adequate rights
to handle the resource. Whenever actors, their associated
roles, and tasks are identified, then legal rights should sup-
port the roles. To support such modelling, our framework
extends the Secure Tropos modelling language. The origi-
nal Secure Tropos language does not provide support for
modelling legal dependencies. We extend the language
and define a legal dependency as a dependency that intro-
duces a legal goal and in which an actor has legal rights
to perform an action to attain the goal. This dependency
also supports the correlatives among the rights.

• Extract legal rights, correlatives and constraints: Finally
the legal right, correlatives, and legal constraints are
extracted once the goals, actors, tasks, and resources are
identified. Every right of an actor may be correlative as
well as opposite of another right. Therefore care should be
taken when the rights and correlatives are extracted for the
various actions. The rights (as mentioned Sect. 3.1) some-
times imply freedom of an actor to perform an action,
such privilege, or imply restricted freedom to perform an
action, such as duty and liability, or even imply certain
restrictions that forbid an actor to perform an action, such
as no-right and disability. Therefore every extracted legal
right does not imply restriction and we need to distinguish
the rights which are stringent to apply. In our framework,
when legal rights and correlatives restrict, limit or control
certain actions in a situation, then these rights are defined
as legal constraints. In particular, legal constraints are
used to model restrictions, imposed by relevant regula-
tions, of an actor’s rights to perform an action or to prevent
the actor from performing an action. Figure 6 depicts a
conceptual view of the rights and associate correlatives
and opposites that belong to the right holder and its con-
tribution to attain or violate the goal based on the required
resource and action performed by the actor.

To enhance understanding, we provide a small example to
demonstrate the modelling regulation step of the framework.
Note that a detailed demonstration of this step is presented
in Sect. 5, with the aid of a case-study. In particular, we
employ the underlying activities within the modelling regu-
lation to extract the legal and correlatives from the legal text.
We consider article 16 of directive 95/46/EC to demonstrate
the example.

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 381

Example

Article 16 (confidentiality of data processing), directive
95/46/EC
Any person acting under the authority of the controller or
of the processor, including the processor himself, who has
access to personal data, must not process them except on
instructions from the controller, unless he is required to do
so by law.

Input scenario
John is working as a data processing operator in the IT depart-
ment of a bank. Several private companies are the main
customers of the bank. Therefore the bank maintains the sal-
ary information of the employees working in the companies.
John’s main task is to update the account balances once the
salary sheet has been arrived from the companies at the end
of every month.

Modelling regulation
Initially we need to identify the goals of the actor and those
resulting from the relevant regulation. Using the “identify
goal” activity of the proposed framework, the main goal
of the directive is to protect personal data. Then, using the
refinement goal activity the main goal is further analysed and
refined into a number of sub-goals such as confidentiality
when data is processed (Article 16 above). Moreover, goals
and sub-goals are identified for the relevant actors. For exam-
ple, John as an actor has a goal to perform his job responsibly
and a sub-goal to accurately process the relevant data. By
employing the “identify actors” activity of the framework,
two actors are identified from the legal text, i.e. the data pro-
cessing operator and the data controller. To keep this example
simple, for the sake of demonstration, we consider John as
the data processing operator who operates on behalf of the
controller and a customer actor as the owner of the individ-
ual account information. The main task is the process of the
data, i.e. the update of the account balance by John once a
salary sheet is received. The main resource is the personal
(customer) data. By following the “extract legal rights, cor-
relatives and constraints” activity of the framework and by
considering only normative phrases (i.e. must not) and condi-
tional keywords (i.e. unless)—again for the sake of simplicity
for this example—a number of legal rights are extracted as
shown below. It is worth noting that all extracted rights imply
restrictions and therefore in our framework we treat them as
legal constraints.

• John has the liability to process only the customer account
balance once the salary sheet has been arrived.

• When an authorised customer requests the account bal-
ance, then John has the duty to provide the account balance
information.

• John has no-right to process other information of the cus-
tomer beyond the account balance (e.g. due to the norma-
tive phrase must not in the legal text)

• John has no-right to use customer account information for
any other purpose. For example John must not disclose
salary information to another company’s employees.

4.2 Mapping legal constraints to security constraint
and security attack scenario

In the previous step, all legal rights, correlatives, and legal
constraints were identified based on the legal text and the
actors of the system under development. The next step
includes two sub-steps. The first sub-step is used to identify
relevant security requirements of the system under develop-
ment, model them as security constraints, and align them with
relevant legal constraints. The second sub-step is used to map
legal constraints to security attack scenarios. This enables us
to analyse, based on possible attacks, the satisfaction of the
legal and security constraints, and if necessary refine the ini-
tial security requirements. Similar to the previous step, the
Secure Tropos goal modelling language is employed to elicit
security constraints and analyse them along with legal con-
straints of the system under development and the Security
Attack Scenarios approach is used to analyse the satisfaction
of legal constraints based on potential security attacks to the
system.

4.2.1 Mapping legal constraints to security constraints

In principle, the conceptual approaches of this sub-step and
the previous step are the same. The main difference lies in
the fact that in the previous step, the various actors of the
system were analysed, while in this step, the system itself is
analysed. In particular, the various activities of this sub-step
are:

• Identify and refine security goals. Security goals are iden-
tified by analysing the business specification, the system
environment, regulation related goals, and stakeholders’
expectations. Similar to the analysis described in the pre-
vious step, initial goals might be high level, which if
required are refined to sub-goals that directly support the
main goal. From the security point of view, the main focus
is to ensure critical security properties such as confiden-
tiality, integrity, availability, authenticity, and non-repu-
diation of the system under development.

• Analyse security and legal constraints. Similar to the
previous step, relevant security constraints and legal con-
straints are identified and analysed. Again the main differ-
ence being that in this step the focus is on the constraints
related to the system rather than the actors. It is worth
noting however, that a number of security constraints and

123

www.manaraa.com

382 S. Islam et al.

in fact legal constraints can be the same for the system as
for the actors. This is particularly true when specific goals
of the actors are satisfied through the system. In this case,
the security and legal constraints related to these goals
are also introduced to the system.

• Model and analyse secure and legal dependencies. Dur-
ing this step, we identify and analyse the potential depen-
dencies related to the security constraints and goals as
well as the legal constraints. Since this type of depen-
dencies might affect the satisfaction of the various secu-
rity constraints and legal constraints, it is important to
model and analyse these dependencies. It is also impor-
tant for our work to differentiate between two different
types of dependencies (i.e. security and legal) and model
and analyse these dependencies related to the security and
legal constraints respectively. Our framework extends the
Secure Tropos modelling language, which already con-
siders the concept of secure dependency, with the notion
of legal dependency. Legal dependencies, in our frame-
work, are modelled along with secure dependencies and
they enable developers to model how an actor, with some
legal rights and constraints, executes some behaviour
action and depends upon another actor’s correlative action
to attain some goal as productive action by using some
resource (if it is required). Moreover, legal constraints
are correlated with security constraints so that identified
security requirements can be aligned with the relevant
regulations. To achieve this, our framework supports the
integration of legal constraints to secure dependencies
(and security constraints to legal dependencies) to support
the mapping of security constraints with the relevant legal
constraints within the context of the secure/legal depen-
dency. From an analysis perspective, this means that the
modelled security/legal constraints need to be satisfied by
the relevant actors for the dependencies to be valid from
a legal point of view.

4.2.2 Mapping legal constraints to security attack scenarios

Research [1] has shown that the earlier in the development
process security requirements are verified the less the cost
is for the project. We believe the same is true for the analy-
sis and verification of legal requirements. Therefore, dur-
ing this step we analyse the identified security and legal
requirements (from the previous steps) based on possible
security attacks and threats to the system. This is important,
since some of these attacks, apart from introducing security
issues, might introduce non-compliance issues to the sys-
tem under development. It is therefore necessary to identify
these issues and refine the security requirements so both secu-
rity and non-compliance issues can be addressed early in the
development process. To support this, our framework inte-
grates the process of security attack scenarios [18] of Secure

Tropos. We extend the current scenario representation by
mapping certain legal constraints (e.g. no-rights and dis-
ability) within security attack scenarios to specify the
non-compliance issues. There are four activities in this
step:

• Identify attacker intentions. This activity enables devel-
opers to understand the various motives of the attacker, as
attacker’s goals, that lead him/her to perform the attacks.
By understanding these motives, we might be able to iden-
tify some non-technical protections for the system. We
are also able to identify potential resources of the system
that might be attacked. In our framework, we model the
goals of an attacker along with possible resources of the
system that might be attacked with the aid of attack links.
An attack link connects an attacker’s goal and the cor-
responding system resource that might be attacked due
to the specific attacker goal. Graphically, these links are
represented as dash-lines with an «attack» tag.

• Identify non-compliance issues. The aim of this task is
to identify non-compliance issues when an attacker per-
forms an action beyond his right and disability or does
not perform an action despite of duty and obligation.
We model this situation within security attack scenar-
ios to specify the non-compliance issue within the sys-
tem environment. To support this, we extend the security
attack scenario notation and meta-model by introducing
a new nonconformity link. This link is used to distin-
guish the case of a non-compliance issue from a case
of security attack in a given scenario. Graphically, this
link is represented as a dash-link with a «nonconformity»
tag.

• Identify possible countermeasures. Here we consider
how the system under development “reacts” to the
potential attacks and non-compliance issues identified
in the previous steps. For this reason, the concept
of secure capabilities is used, from the Secure Tro-
pos methodology, to identify capabilities of the sys-
tem that countermeasure the potential attacks so that
the initially identified legal and security goals can be
attained. Secure capabilities can prevent these attacks
in the sense that an actor with such capabilities can
react to these attacks. The secure capabilities, of each
actor, that help to prevent the identified attacks are
modelled as dashed-links, incorporating a «help» tag,
which indicates the capability and the attack they help
to prevent. Attacks that cannot be prevented are notated
as solid attack links (as opposed to dashed attack
links).

• Refine initial security requirements. Based on the previ-
ous steps of the analysis, the initial security requirements
are refined (if needed) to accommodate provisions for
the countermeasure of attacks that cannot be prevented

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 383

with the existing set of requirements. Simultaneously, the
newly identified requirements are aligned with the appro-
priate legal requirements using the activities and steps
described previously. Once the developers are confident
that the secure capabilities of the system can countermea-
sure possible attacks, the design of the system is devel-
oped.

4.3 Mapping secure tropos models to UMLsec models
aligning with a given regulation

The final step of the framework focuses on the construction
of the architectural and detailed designs of the system. Dur-
ing this step, our framework maps the Secure Tropos model
to relevant UMLsec models and it assists the developer in
aligning the security and legal artefacts to the UMLsec design
diagrams. The underlying activities involved within this step
focus on how to construct the design diagrams so that design
can support both the security and legal concepts. Note that,
Mouratidis et al. already integrated the Secure Tropos nota-
tion and the UMLsec notation for the development of the
secure system [15] and we take this work as our foundation.
However, that work did not address the alignment of legal
concepts or security attack scenarios to the design solution.
Therefore, our framework extends beyond their contribution
by considering the legal dimension, including non-compli-
ance issues, as well as security attack scenarios. An overview
of the activities involved in this step is given below:

• Identify UMLsec stereotypes. As stated, UMLsec stereo-
types, when attached to the UMLsec model add security
information to the model elements. However, the existing
UMLsec notation does not directly support legal infor-
mation. Therefore, our framework includes the new ste-
reotypes «legitimate process» and «data filter», as stated
earlier section, to support modelling and analysis of legal
concepts within the UMLsec models. The focus of this
activity is to identify the appropriate stereotypes so that
both the legal and security information is appropriately
modelled in the corresponding UMLsec model. To assist
the identification of the appropriate stereotypes, devel-
opers need to look at the models defined in the previous
stages, in particular the identified security requirements
and legal constraints. For each one of these, stereotypes
need to be employed to model the issue raised by the
requirements and the constraints.

• Construct architectural design diagrams. This activity
mainly constructs the architecture of the overall system
by UMLsec class and deployment diagram. As mentioned
above, existing work has mapped Secure Tropos models
to UMLsec models and in particular UMLsec class and
deployment diagrams within architectural design [15].

Therefore we follow the guidelines to support the map-
ping of Secure Tropos analysis model to UMLsec class
and deployment diagram based on the current work. In
addition, we include legal issues and refined security
requirements from the security attack scenarios within the
diagrams, so that the architectural design enables devel-
opers to trace not only the security requirements but also
align the design with the legal concepts identified in the
previous analysis.

• Construct detailed design diagrams. In this activity,
details of the system components are specified with the
aid of UMLsec sequence diagrams. UMLsec sequence
diagrams model secure interactions of the system’s
components. Constraints associated with the UMLsec
stereotypes considering security and legal concepts are
integrated within the diagram. Therefore our framework
maps Secure Tropos actor model with UMLsec sequence
diagrams to precisely specify different actor interactions
considering derived legal rights from legal text. The fol-
lowing steps were identified for the mapping:
Step 1: Identify object for specific interaction. Actors

in the Secure Tropos security enhanced actor
model who participate in a specific interaction
(i.e. application scenario) are treated as objects
for the UMLsec sequence diagram.

Step 2: Identify possible interactions among the objects.
Each dependency (both legal and secure) among
actors might provide interaction within the
objects in the corresponding sequence diagram.
However this is not a strict rule, depending on the
type of dependency and the specific sequence of
interaction.

Step 3: Identify possible messages and arguments within
interactions. Capabilities of each of the actors’
operations are mapped, within UMLsec
sequence diagrams, into the message exchange
from one object to another object. Resources
related to each of the actors are mapped to argu-
ments of the message on the UMLsec sequence
diagram.

Step 4: Identify the necessary UMLsec stereotypes.
UMLsec stereotypes are identified through the
secure and legal dependencies from the Secure
Tropos security enhanced actor model. The type
of the secure and legal dependency indicates
whether an object is critical for the security of
the system or not. Any specific resource (related
to security and legal constraints) required by the
stereotype is also considered within the interac-
tion. If required, these constraints are directly
mapped as arguments or messages as security
and legal rules on the sequence diagram.

123

www.manaraa.com

384 S. Islam et al.

5 Case study

To demonstrate the validity of our approach, we present an
application from an industrial context based on the secure
service-based software (SBS) system. The goal is to elicit
security requirements, to align them with relevant regula-
tions, and to design a secure system, in which the design dia-
grams support both the security requirements and the legal
constraints. We consider two different directives from the EU
information society legislation (2002/58/EC and 95/46/EC)
[21] and the corresponding national law from the German
Federal Data Protection Act (FDPA) [5]. We have chosen
these because they are relevant to the application context of
the system under development (the case study is in Germany).
In particular, the purpose of directive 2002/58/EC is on pri-
vacy and electronic communication and directive 95/46/EC
is on the protection of personal data. Partial text from Article
4 and 5 of 2002/58/EC are considered relevant with the appli-
cation context, and partial text from Article 17 of 95/46/EC
is considered as a cross reference of the 2002/58/EC. It is
worth mentioning, for the sake of clarity, that EU directives
are not directly executed within the EU member states but
they define a set of regulations that must be achieved by
an EU member state’s national laws. Member states must
adapt their national laws to meet the goals from the related
specific directive, and they are free to decide how to do that.
Therefore we have included the national law German Federal
Data Protection Act (FDPA), because it relates to directive
95/46/EC. The reasons for choosing FDPA are that the case-
study context lies in Germany, and the act ensures privacy of
personal data and legitimate collection, processing or use of
personal data, and therefore it supports the implementation
of the directive 95/46/EC. Moreover, the selected Section
5, 9 and Annex from the FDPA address the articles of the
95/46/EC.

We consider several hypotheses for the case study to val-
idate the framework. They are:

• Regulation modelling extracts the possible legal rights
and constraints from the relevant legal text (H1).

• The identified security requirements are influenced by
corresponding legal constraints (H2).

• The refined security requirements address non-compli-
ance issues in addition to security threats (H3).

• The secure design diagrams trace the requirements and
the legal constraints (H4).

• The framework should support both forward and back-
ward tracing (H5).

To make the case-study consistent and easy to understand,
we consider the following business goals and related features
from the application context.

Business goals

• The system shall allow the legitimate user to request any
resource.

• The system shall provide response to any legitimate user
request.

Major features

• The system should support single-sign-on service with
a centralized authentication mechanism for any service
request.

• User requests for protected resources and manipulation
of relevant data should be available through the Internet.

Scenarios
A user should be able to request, process, and restore spe-
cific data from anywhere by establishing a connection with
the service provider. A single customer or group of customers
under a specific subscription are treated as users. In our sce-
narios, we distinguish the participating entities. A user rep-
resents a customer who has signed up for access to protected
content; Browser is the web application entity responsible for
handling user requests and responses; User Identity Provider
is the authority responsible to validate the user identity and
support login procedures; Content Manager is the web ser-
vice entity responsible for delivery content (mostly data) and
for user data restoration; Certificate Authority is the author-
ity responsible for issuing appropriate security certificates
for legitimate users; and Service Provider is the authority
responsible for the overall infrastructure.

5.1 Modelling regulation

Following the steps described in the previous section, we
analyse the legal text from the directives and the act.

Relevant legal text

Directive 2002/58/EC (Directive on privacy and electronic
communications)

Article 4 (partial), Security
1. The provider of a publicly available electronic com-
munications service must take appropriate technical and
organisational measures to safeguard security of its
services, if necessary in conjunction with the provider of
the public communications network with respect to net-
work security. Having regard to the state of the art and the
cost of their implementation, these measures shall ensure a
level of security appropriate to the risk presented.

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 385

Article 5 (partial), Confidentiality of the communications
Member States shall ensure that the use of electronic com-
munications networks to store information or to gain access
to information stored in the terminal equipment of a
subscriber or user is only allowed on condition that the
subscriber or user concerned is provided with clear and
comprehensive information in accordance with Directive
95/46/EC, inter alia about the purposes of the processing,
and is offered the right to refuse such processing by the
data controller. This shall not prevent any technical storage
or access for the sole purpose of carrying out or facilitat-
ing the transmission of a communication over an electronic
communications network, or as strictly necessary in order to
provide an information society service explicitly requested
by the subscriber or user.

Directive 95/46/EC, (Directive on protection personal
data)

Article 17 (partial), Security of processing
1. Member States shall provide that the controller must
implement appropriate technical and organizational
measures to protect personal data against accidental or
unlawful destruction or accidental loss, alteration, unautho-
rized disclosure or access, in particular where the processing
involves the transmission of data over a network, and against
all other unlawful forms of processing. Having regard to the
state of the art and the cost of their implementation, such
measures shall ensure a level of security appropriate to
the risks represented by the processing and the nature of the
data to be protected.

German Federal Data Protection Act

§ 5 (Confidentiality)
Persons employed in data processing shall not collect, pro-
cess or use personal data without authorisation (confiden-
tiality). On taking up their duties such persons, in so far
as they work for private bodies, shall be required to give
an undertaking to maintain such confidentiality. This under-
taking shall continue to be valid after termination of their
activity.

§ 9 (Technical and organisational measures)
Public and private bodies processing personal data either
on their own behalf or on behalf of others shall take the
technical and organisational measures necessary to ensure
the implementation of the provisions of this Act, in particular
the requirements set out in the annex to this Act. Measures
shall be required only if the effort involved is reasonable in
relation to the desired level of protection.

Annex (partial) (to the first sentence of Section 9 of this
Act)
Where personal data are processed or used automatically,
the internal organisation of authorities or enterprises are to
be arranged in such a way that it meets the specific require-
ments of data protection. In particular, measures suited to
the type of personal data or data categories to be protected
shall be taken,

1. to prevent unauthorised persons from gaining access to
data processing systems with which personal data are pro-
cessed or used (access control),
3. to ensure that persons entitled to use a data processing
system have access only to the data to which they have
a right of access, and that personal data cannot be read,
copied, modified or removed without authorisation in the
course of processing or use and after storage (access con-
trol),
4. to ensure that personal data cannot be read, copied,
modified or removed without authorisation during elec-
tronic transmission or transport, and that it is possible to
check and establish to which bodies the transfer of per-
sonal data by means of data transmission facilities is envis-
aged (transmission control),
7. to ensure that personal data are protected from acci-
dental destruction or loss (availability control).

In the above text, normative phrases (such as must, shall)
and conditional phrases (such as and, or) are in bold; a sub-
ject for an action is underlined; an action is italicized; an
object is in bold and underlined; a measurement parameter is
in bold, italicized and underlined. Following the steps of the
framework, the main focus is now to identify basic Secure
Tropos elements based on the legal taxonomy.

Analysing the regulation

Identify and refine goals. The main goal of 2002/58/EC is
to protect privacy in electronic communication and accu-
rate processing of the personal data. Article 4 of the direc-
tive refines this high level goal to secure service by taking
appropriate technical and organisational measures and arti-
cle 5 refers to confidentiality in electronic communication.
The main goal of 95/46/EC is to ensure protection of per-
sonal data. Article 17 refines the main goal to security in
processing and also to adequate technical and organisational
measure. The FDPA has similar goals as 95/46/EC because it
directly implements that directive. Section 5 of FDPA refines
the main goal to confidentiality in data processing by proces-
sor or processing operator and section 9 refines the main goal
to proper access, transmission and availability control under
technical and organisational measure. Note that, our frame-
work facilitates the establishment of a link between the EU

123

www.manaraa.com

386 S. Islam et al.

directive and the relevant national law by using the concepts
of goal and sub-goal.

Identify actors, associate tasks and resources. Our analysis
has resulted in the following for the main actors of the sys-
tem. A user’s main goal is to use and process data through
the tasks request, process, own, and restore. The actors under
the providers are identity manager, certificate authority, con-
tent manager, and the service provider itself. The identity
manager’s main goal is to identify the user before the user
is allowed to perform any action. The certificate authority
delivers the identity information once a user subscription
has been approved. The data controller or data processing
operator under the data controller serves as the content man-
ager and is responsible for the delivery of the requested data,
restoration of data and if require further process of the data.
Finally, the service provider is responsible for the overall
system infrastructure including ensuring adequate technical
and organisational measures, secure services, and protection
of personal data. It is also possible for some of these actors
to play several roles. For example, the data controller may
play the role of service provider, certificate authority, or iden-
tity manager. The main tasks from the provider perspective
are to manage user identity information and sensitive data,
and to respond any legitimate user request. Therefore, these
tasks should support the satisfaction of the goals (and refined
sub-goals) identified in the previous step, such as protect per-
sonal data, secure service, provide adequate technical, and
organisational measures.

Extract legal rights, correlatives, and legal constraints. The
final activity in this step of the framework is to extract appro-
priate legal rights, correlatives, and legal constraints for the
application context.

Claim/duty, power/ liability, and privilege

• When a legitimate user claims to access, process, and
use any specific data or claims to restore data, then the
controller has the duty to perform the appropriate action
based on the nature of the claim.

• A legitimate user has the privilege to access, process, and
use data through public communication networks.

• The content manager has the liability to access, process,
and use the data if required up to his/her specific limit.

• The service provider has the liability to take appropriate
technical and organisational measures to support security
of service, protection of personal data, access, transmis-
sion, and availability control.

• The content manager has the liability to take appropriate
technical and organizational measures to support lawful
processing, to protect against accidental loss or destruc-
tion of the data.

• The service provider, the content manager, and the
resource owner have the power to refuse any user access,
process, and storage of specific data, information, and/or
service.

No-right and disability

• A user has no-right to unauthorised access, disclose, and
unlawful process of data.

• The service provider, the content manager, and/or the
owner have no right to unauthorised access, process, and
use of the data.

• Without consent from the service provider, the content
manager, or the owner, the user should not (disability)
access, process, and store data.

• The system has no-right to accidental loss and destruction
of data.

Note that except of privilege and power, all the remaining
legal rights should be treated in strict sense within the context.
Therefore, we consider all of them as legal constraints. More-
over, during our analysis, we have identified some differences
between the EU directives and the German FDPA. The nor-
mative phrases of the directives generally are represented
using must, shall, shall not, and so on, but FDPA represents
the same meaning without using must. Moreover, measuring
parameters such as appropriate technical and organizational
measure are usually refined to several constraints such as
access, transmission, availability control by the Annex of §9.
From this, we can conclude that the national law facilitates
more the extraction of legal rights compared to the direc-
tives. It is also worth noting that not all ambiguous terms of
the legal text can be refined by our framework. An example
is the level of security appropriate to the risk from article
17 of 95/46/EC, and desired level of protection from § 9 of
FDPA. This is mainly because these terms are mainly related
to several measuring elements including cost and nature of
the object, risk and its impact on the overall business, cost of
control action, but also non-technical issues such as under-
lying security policies, procedure and effectiveness of their
implementation, organisational culture, and so on. Therefore,
it is difficult to combine all these technical and non-technical
issues into a single instance stated in the legal text.

5.2 Mapping legal constraints to security constraints

The artefacts from the previous step are employed in this step
to assist mapping legal constraints to security constraints.
Initially, we further refine some of the goals. For instance,
the goal access control is refined to user identification and
required level of authorization. After refining all the required
goals, the next activity aims to analyse security and legal
constraints and to develop the associate security and legal

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 387

Fig. 7 Secure Tropos model with security and legal dependency

dependencies. In doing so, we need to identify the security
constraints from the application context and align them with
the identified legal constraints through the dependencies of
the security enhanced actor model. Initially, the user submits
a subscription request through a protected web browser to
the service provider. The user expects that the service should
be secured within the communication link. To support the
single-sign-on web-service feature along with legal and secu-
rity goals, every user after approval of the subscription, claim
identity data to attain the user goal obtain login info. The
Content manager provides the login data to subscripted user.
A legal dependency is created from the user to the identity
manager by integrating the legal goal protection of personal
data along with the relevant rights and constraints. Similarly,
a secure dependency is created by adding the secure goals
service availability, and data processing integrity along with
tasks, resources, and constraints.

Once the user claims data then the content manager has
the duty to provide data when having the owner consent.
Note that the content manager accesses only the data for
which he/she has the right to access, process, and deliver. No
option should be provided for the content manager to access
data for which he/she does not have the appropriate rights.
The content manager also expects that data processing should
confirm integrity so that the purpose of security in data pro-
cessing must not be violated. User might also claim to restore
data and the content manager has the duty to restore it. Data
communications through the public network requires to keep
communication secure as security constraints so that unau-
thorised user cannot access, process, and use any data. The
security enhanced actor model, shown in Fig. 7, provides the
mapping between security and legal constraints in a man-
ner that elicited security requirements, modelled as security
constraints, can be aligned with regulation through several
security and legal dependencies.

Based on the above analysis, we have derived a set of secu-
rity requirements that align with legal constraints as shown

below. Note that, for reasons of simplicity, we do not consider
all the identified aligned security requirements here.

I. The user shall be identified and authenticated before
allowed to perform any action relating to data collect,
process, and use.

II. The system shall only provide the related data to the
authorised user that has right to collect, process, and
use.

III. The service provider shall support sufficient organisa-
tional and technical measure to ensure privacy of the
personal data.

IV. The system shall keep the established communication
link secure to protect any unauthorised access and pro-
cess.

5.3 Mapping legal constraints to security attack scenario

To perform this step, we need to identify the attacker
intentions, their tasks, and related threats within the sys-
tem environment. We follow the Common Attack Pattern
Enumeration and Classification (CAPEC) [8] to identify the
threats and derive possible attacker goals on the application
context. Note that there are several other sources to identify
the threat environment but for simplicity in this paper we con-
sider only CAPEC for the case-study. We consider that the
main intentions of the attacker are unavailable single-sign-
on service and obtain sensitive information. Figure 8 shows
the attacker scenario for unavailable single-sign-on service
and how it can be decomposed to band-width consumption
and resource depletion to obstruct the goal service availabil-
ity. To accomplish these sub-goals, an attacker can spread
malicious data by flooding the established communication
link so that it can consume the bandwidth of the link or by
sending unnecessary numerous requests to the target system
to deplete the system resources. Note that the same attack can
contribute to violate legal and security goals. On the other

123

www.manaraa.com

388 S. Islam et al.

Fig. 8 Security attack scenario for service unavailability

Fig. 9 Security attack scenario for obtain sensitive data

hand, a legitimate user intentionally might send numerous
requests to the provider to consume the system processing
resource. Therefore, these attacks contribute to the non-com-
pliance issues along with security threats within the system
environment.

Another goal of an attacker identified by our analysis is
Obtain sensitive data. This can be decomposed to get data
and unauthorized access to the system as shown in Fig. 9.
To accomplish these sub-goals, an attacker might try to read
the transmitted data by eavesdropping or in the case of a
legitimate user (internal attacker, such as the data control-
ler for example) might try to abuse his right to obtain data
(e.g. no-right), or try to obtain login information. Once the
attacker (or legitimate user) manages to obtain unauthorised
data then this data may be processed unlawfully in a man-
ner that it violates the purpose of data collection, or disclose
the data in unauthorised fashion. There are also cases where
incidents are accidentally caused by the system itself, such
as accidental damage or loss of the data.

As discussed in the previous section, the next step of the
process is to identify suitable countermeasures that the sys-
tem might use to prevent the above identified attacks. To pro-
tect denial of service attacks, the system requires adequate

technical measures including monitoring capability of the
network traffic and filtering of unnecessary requests, there-
fore monitor and filter data as secure capabilities are essential
to satisfy the service availability and secure service goals. To
protect sensitive data, it is required that the system has secure
capabilities such as decrypt incoming data and encrypt out-
going data as data security to control eavesdropping; and
monitor authorised user activities to ensure that legitimate
users do not abuse their rights. Moreover, the secure capa-
bility non-forgeable identity is required to protect towards
duplication of login data. However, this capability on its own
is not sufficient to protect against the attacker capturing login
information, since an attacker may obtain certificate key by
other means such as social engineering or theft of hardware
devices.

Therefore, the above analysis assists developers in refin-
ing the initial security requirements or introducing new ones
to ensure that the above secure capabilities are supported by
the system.

Examples of refined security requirements are:

• The system shall monitor and if required filter incoming
malicious traffic.

• Every data processing action by the data processing oper-
ator shall be tracked and controlled.

• The system shall prevent authorised users to process data
that violates the purpose of the data collection, process,
and use.

• The system shall encrypt all outgoing data through public
communication network and decrypt all incoming data so
that unauthorised users cannot access the data.

The above example also indicates the need for a new require-
ment:

• The system shall ensure that every user should have non-
forgeable identity-related information to prove his/her
identity.

5.4 Mapping Secure Tropos model to UMLsec model

The final step of our framework is the development of the
secure design by mapping Secure Tropos models to UMLsec
models. In doing so, initially we need to identify the UMLsec
stereotypes, based on the security requirements along with
the legal constraints. These stereotypes allow us to specify the
security and legal constraints linked to the information flow
and the processes carried out by the UMLsec model com-
ponents. For the presented case study, we identified several
stereotypes such as «fair service delivery», «legitimate pro-
cess», « data filter», «secure links», «Internet», and «secrecy»
to support the security requirements and the legal constraints.
We then constructed relevant UMLsec class and deployment

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 389

diagrams as a part of the architectural design. Figure 10
shows the «fair service delivery» and the « legitimate pro-
cess» stereotypes integrated into a class diagram to support
the alignment of security requirements and legal constraints.
The stereotype «fair service delivery» has three associate tags
{start}, {continue}, and {stop} to support the action related to
services such as request data, deliver data, and close session.
Therefore, this stereotype captures the requirements relating
to the transaction of the work flow in the application context.
To support the actor’s behaviour of action regulated by legal
rights and constraints, the «legitimate process» stereotype is
included. It has three tags: {action}, {right}, and {resource}.
The values of the {action} influence possible tasks performed
by the actors within the system environment. The tag {right}
is initiated from the extracted legal rights and constraints to
regulate the action. Finally {resource} identifies the possible
required resources within the system environment. There-
fore, «fair service delivery» focuses on the security part,
while « legitimate process » focuses on the legal part.

The four main classes shown in the Fig. 10 specify the
participating entities within the context:

• User. User of the system with the following attributes: the
IP address Ip, used to identify the user’s machine; the data
set userdata, which contains the name and the subscrip-
tion information; the public key key_e and the associated
private key inv(key_e) (used to encrypt and sign the rele-
vant data); a session key key_s for establishing a session.

• ServiceProvider. Central administrator with the following
attributes: the public key key_l, to verify the login token.

• IdentityManager. Login service provider with the follow-
ing attributes: the key pair key_l and inv(key_l), to serve
the login service. It also contains the public key key_ca
of the certification authority to decrypt and verify data.

• ContentManager. Data controller or data processing oper-
ator responsible for the delivery and restoration of the pro-
tected data. This class contains a privilege list LP from the
owner and service provider to authorised user to access,
process, and use data. A session key key_s is maintained
during the established session between the user and the
content manager. It also contains the public key key_i of
the identity manager.

At this stage of the architectural design, it is important,
from the security point of view, to understand the physi-
cal distribution of the nodes, in order to specify in more
detail the security attributes of the system’s communication
links. To support this, our framework uses deployment dia-
grams as shown in Fig. 11. To satisfy the security constraints
such as keep communication secure, legal goals such as per-
sonal data protection, or security goals such as data process-
ing integrity, the UMLsec stereotypes «secure links» and
«secrecy» have been employed to ensure that the security

Fig. 10 Class diagram

<<LAN>>

<<secure links>>User Equipment

Smart card

Signature key

Service Provider

login

Content Manager

delivery content

receive content
<<secrecy>>

Identity provider

<<data filter >>

<<internet>>

Fig. 11 Deployment diagram

requirements and legal constraints on the communication
are met by the physical layer. To ensure service availability,
« data filter» stereotype is employed for both communica-
tion network as link and providers as nodes. Communication
among the provider nodes and user can be done through the
«Internet» or «LAN» stereotype. The deployment diagram
also specifies how user equipment can initiate the login pro-
cess with the signature key obtained from a smart card.

Finally, UMLsec sequence diagrams are constructed as
part of the detailed design. Figure 12 shows a sequence dia-
gram that describes the single-sign-on service feature along
with identity and authenticity. The purpose is to establish
a secure session to obtain data and restore processed data
within the same or different session. Note that we assume
that the user is already approved by the service provider.

123

www.manaraa.com

390 S. Islam et al.

Fig. 12 UMLsec sequence diagram

Initially, a user submits a request for a protected web-service
page (a part of content (data)) to the Service Provider (SP).

The SP returns an html form to the user for identity infor-
mation. The user further requests a login token by sending
a certificate key, generated from a smart card, to the user
identity manager (UIM). The UIM verifies the user iden-
tity and generates a login token (IP, time stamp, user data
(name, subscription info)) and sends the signed token back
to the identified user. The user with this signed login token
claims data from the service provider. The service provider
verifies the login token and forwards it to the Content Man-
ager (CM). The CM initially verifies the owner consent to
grant the data to the user and the associate level of authori-
zation as part to fulfil the legal dependency. Finally the CM
duly delivers the data. The user may further claim to restore
the processed data within same session and/or in a different
session. The CM then restores the data. All data transfers
between the CM and the user are encrypted with the session
key shared between the entities. The single-sign-on authen-
tication mechanism addresses the unresolved attack obtain
login data analysed in the corresponding security attack sce-
nario. Because the login token consists of a user machine IP
and a time stamp (current date and maximum time limit to
use the token), if an attacker captures the token, they will
still be unable to login due to different IP or exceeded time
limit. The Https protocol is used to encrypt the data using
the session key exchange between the user and the CM. This
supports the keep communication secure constraint identified
earlier in the analysis and the relevant stereotype «data secu-
rity» with the capability for securely decrypting incoming
data and encrypting outgoing data.

6 Conclusions

Compliance with regulations is becoming an important con-
cern for software systems supporting critical organizational
purposes. Our approach addresses one of the issues raised in
recent research [34,41] regarding modelling and analysis of
legal regulations during a software system development pro-
cess. Laws change very often by amending or repealing old
legislation or by introducing new legislation. This evolving
situation is especially important and frequent for the infor-
mation security laws. However, the current state of the art in
the development of software systems fails to provide solu-
tions for this issue. Our framework is a first step towards this
direction.

Our framework provides several benefits. It supports elic-
itation and analysis of security requirements that align with
legal issues from the requirements stage of the software
development process. As it has been argued in recent research
[22], this is very important. The framework also supports the
development of designs that enable developers to trace back
specific solutions to the relevant security and legal require-
ments, and therefore to the appropriate legal text. When
an amendment (new or update article or section) of law is
introduced, developers need to establish what goals, legal
constraints, or relating artefacts the new (or updated) law
introduces or modifies. For instance, when an article under a
directive or a section under the FDPA is amended, then ini-
tially we should look at the goals due to the amendment then
continue to review the artefacts in particular legal rights, con-
straints, and security requirements that can be affected by the
change. If require new goals or constraints can be included

123

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 391

data
processing

integrity

keep
communica-
tion secure

liability for
technical and
organisational

measure

non-forgeable
identity

decrypt
incoming &

encrypt
outgoing

data

<<secure
links>>

<<fair service
delivery>>

personal
data

protection

Legal goal &
constraints

UMLsec
stereotypes

<<authenticity>>

data only
right to
access

monitor &
filter data

security goal
& requirement

refine security
requirement

<<legitimate
process>>

<<data filter>>

subscripted
user

monitor
authorised

user activities

Fig. 13 Tracing from regulation modelling to security requirements and design

depending on the context of change. Thus modelling regu-
lation by following goal-driven Secure Tropos allows us to
adapt the change from the legal concept to the software that
compliance with law. Moreover, the presented framework
supports the analysis of legal text and the extraction of a num-
ber of concepts based on Hohfeld’s legal taxonomy, such as
legal privilege, claim, power, immunity, and their correlatives
duty, no-right, liability, and disability. This is an important
improvement to the existing works (see related work sec-
tion), where only permitted and required actions are used to
represent legal rights. As research has shown [4,43], this is
not sufficient to represent stakeholder legal rights. It is also
worth noting that the presented framework provides support
for the unification and better understanding of concepts and
terminology from two fundamentally different areas, i.e. law
and software engineering, since it uses concepts and terms
from the legal domain such as privilege, duty, and liability,
together with concepts from the software engineering domain
such as actor, goal, and task. Last but not least, our framework
supports the identification of potential attacks for non-com-
pliance to a specific software system application context and
provides activities and steps to refine a system’s requirements
to overcome such risks.

To demonstrate the applicability of our framework and
to test it against a number of hypotheses, we applied it to
a case study. The case study showed that the framework
sufficiently supports the extraction of legal constraints from
legal texts. The elicited security requirements are aligned
with legal constraints and can be further refined to address
the security threats and non-compliance issues. Therefore,
our framework supports hypotheses H1, H2, and H3 speci-
fied at the beginning of the case study. The case study also
demonstrates that our framework supports tracing of legal

constraints to security requirements and further to secure
design. Figure 13 depicts the artefacts involved to support
tracing from regulation to requirements and to design in
the case study. The left part of the figure represents legal
goals and extracted legal constraints. These legal artefacts
were addressed by appropriate security goals and constraints
and further refined by considering threat and non-compli-
ance issues (shown in the middle part of the figure). Finally
the right part of the figure shows the relevant stereotypes
that support both security and legal aspects. As an exam-
ple, consider a legal goal such as personal data protec-
tion, and legal constraints such as liability for technical
and organisational measure, and data only right to access.
These are addressed by a number of security goals and con-
straints identified during our analysis such as keep communi-
cation secure, data processing integrity, and subscribed user.
These were further refined to security requirements such as
decrypt incoming data and encrypt outgoing data, moni-
tor and filter data, monitor authorised user activities, and
non-forgeable identity. Finally, these requirements were sup-
ported during design by the stereotypes «secure links»,
<<fair service delivery», <<data filter», «legitimate pro-
cess», and «authenticity». The precise semantics of the ste-
reotype enables developers to trace back the need to introduce
them to the security requirements and further to the relevant
legal documents. Therefore, our framework also supports
hypotheses H4 and H5.

However, the framework does not address every ambigu-
ity from legal text, especially when the legal text concerns
with measuring some parameters (such as security level) that
depend upon several other issues. To address this issue, we
are planning to integrate risk management activities into the
framework. Moreover, during the course of the framework

123

www.manaraa.com

392 S. Islam et al.

development and its application to the case study, we have
identified the need to develop appropriate tools. Currently,
we are using tools that belong to some of the components
of our framework such as the Secure Tropos tool and the
UMLsec tool. However, neither of these tools directly sup-
ports to elicit legal rights, correlatives, and legal constraints,
therefore we had to manually work to analyse the legal text
during the case study. But once legal constraints are iden-
tified, then the Secure Tropos tool supports the analysis of
the legal constraints along with security constraints through
the security and legal dependency of the actor model. Fur-
ther analysis for non-compliance issues of the system under
development is also supported by the tool during the security
attack scenarios analysis. Finally, the UMLsec tool can ver-
ify the security and legal property of the stereotypes. We are
currently working to further automate the support provided
by these tools. Moreover, we would like to analyse regula-
tions of other domains such as the health care and financial
domains.

References

1. Herrmann, A., Kerkow, D., Doerr, J.: Exploring the Charac-
teristics of NFR Methods—a Dialogue about two Approaches,
REFSQ—Workshop on Requirements Engineering for Software
Quality (2007), Foundations of Software Quality (2007)

2. Herrmann, A., Paech B.: MOQARE: misuse-oriented quality
requirements engineering. Requir. Eng. J. 13(1), 73–86 (2008)

3. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-ori-
ented requirements engineering. IEEE Trans. Softw. Eng. Special
Issue on Exception Handling 26(10), 978–1005 (2000)

4. Siena, A., Mylopoulos, J., Perini, A., Susi, A.: From laws to require-
ments. In: 1st International Workshop on Requirements Engineer-
ing and Law (Relaw’08)

5. Bundesdatenschutzgesetz - Federal Data Protection Act (as of
15 November 2006), http://www.bfdi.bund.de.

6. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Arguing satis-
faction of security requirements. In: Integrating Security and Soft-
ware Engineering: Advances and Future Visions, pp. 16–43. Idea
Publishing Group, Miami (2006)

7. Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B.: Security
requirements engineering: a framework for representation and
analysis. IEEE Trans. Softw. Eng. 34(1), 133–153 (2008)

8. Common attack pattern enumeration and classification (CAPEC).
http://capec.mitre.org/

9. Firesmith, D.: Engineering security requirements. J. Obj. Technol.
2(1) http://www.jot.fm/issues/issues_2003_01/column6 (2003)

10. Mellado, D., Medina, E., Piattini, M.: A common criterion based
security requirements engineering process for the development of
secure information system. Comput. Stand. Interfaces 29, 244–
253 (2007)

11. Massacci, F., Prest, M., Zannone, N.: Using a security require-
ments engineering methodology in practice: the compliance with
the Italian data protection legislation, Technical Report DIT-04-103
(2004)

12. Sindre, G., Opdahl, A.L.: Eliciting security requirements with mis-
use cases. Requir. Eng. 10(1), 34–44 (2005)

13. Sartor, G.: Fundamental legal concepts: a formal and teleological
characterisation, EUI working paper LAW No. 2006/11

14. Mouratidis, H., Giorgini, P.: Integrating Security and Software
Engineering: Advances and Future Visions. Idea Group Publish-
ing, Miami (2006)

15. Mouratidis, H., Jürjens, J., Fox, J.: Towards a comprehensive
framework for secure systems development, CAiSE 2006. Lec-
ture Notes in Computer Science, vol. 4001, pp. 48–62. Springer,
Berlin (2006)

16. Mouratidis, H., Giorgini, P., Manson, G.: When security meets
software engineering: a case of modelling secure information sys-
tems. Inf. Syst. Elsevier 30(8), 609–629 (2005)

17. Mouratidis, H.: A security oriented approach in the development of
multiagent systems: applied to the management of the health and
social care needs of older people in England. PhD thesis, University
of Sheffield, UK (2004)

18. Mouratidis, H., Giorgini, P.: Security Attack Testing (SAT)—
testing the security of information systems at design time. Inf.
Syst. 32(8), 1166–1183 (2007)

19. Mouratidis, H., Giorgini, P.: Integrating security and software engi-
neering: an introduction. In: Integrating Security and Software
Engineering: Advances and Future Actions, pp. 1–14. Idea Pub-
lishing Group, Miami (2006)

20. Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented
extension of the tropos methodology. Int. J. Softw. Eng. Knowl.
Eng. (IJSEKE) 17(2), 285–309 (2007)

21. Information society, Summary of legislation, European Com-
mission, http://europa.eu/legislation_summaries/information_
society/index_en.htm

22. Saltzer, J., Schroeder, M.: The protection of information in com-
puter systems. Proc. IEEE 63(9), 1278–1308 (1975)

23. Jürjens, J.: Secure Systems Development with UML. Springer,
Berlin (2004)

24. Jürjens, J., Shabalin, P.: Tools for Secure Systems Development
with UML. FASE 2004/05 special issue of the International Jour-
nal on Software Tools for Technology Transfer, 9(5–6), 527–544.
Springer, Berlin (2007)

25. Jürjens, J.: Sound methods and effective tools for model-based
security engineering with UML. ICSE 2005, ACM, pp. 322–331,
(2005)

26. Chung L., Nixon B.A., Yu E., Mylopoulos, J.: Non-Functional
Requirements in Software Engineering. Kluwer Academic
Publishers, Dordrecht (1999)

27. May, M.J., Gunter, C.A., Lee, I.: Privacy APIs: access control tech-
niques to analyze and verify legal privacy policies. In: Proceedings
of the 19th Computer Security Foundations Workshop (2006)

28. Medical Privacy—National Standards to Protect the Privacy of Per-
sonal Health Information. Office for Civil Rights, US Department
of Health and Human Services. http://www.hhs.gov/ocr/hipaa/
finalreg.html (2000)

29. Mead, N.R.: Identifying security requirements using the security
quality requirements engineering (SQUARE) method. In: Integrat-
ing Security and Software Engineering, pp. 44–69. Idea Publishing
Group, Miami (2006)

30. Online news of November 15, 2004, http://digital.dmreview.com/
dmreview

31. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini,
A.: TROPOS: an agent oriented software development method-
ology. In: Journal of Autonomous Agents and Multi-Agent Sys-
tems, 8(3), 203–236. Kluwer Academic Publishers, Dordrecht
(2004)

32. Devanbu, P., Stubblebine, S.: Software engineering for security:
a roadmap. In: Proceedings of ICSE 2000 (the Conference of the
Future of Software Engineering) (2000)

33. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modelling
security requirements through ownership, permission and delega-
tion. In: Proceedings of the 13th IEEE International Requirements

123

http://www.bfdi.bund.de
http://capec.mitre.org/
http://www.jot.fm/issues/issues_2003_01/column6
http://europa.eu/legislation_summaries/information_society/index_en.htm
http://europa.eu/legislation_summaries/information_society/index_en.htm
http://www.hhs.gov/ocr/hipaa/finalreg.html
http://www.hhs.gov/ocr/hipaa/finalreg.html
http://digital.dmreview.com/dmreview
http://digital.dmreview.com/dmreview

www.manaraa.com

A framework to support alignment of secure software engineering with legal regulations 393

Engineering Conference (RE’05), IEEE Computer Society Press,
29 August–2 September (2005)

34. Otto, P.N., Antón, A.I.: Addressing legal requirements in require-
ments engineering. In: 15th IEEE International R. E. Conference
(2007)

35. Privacy Guidelines for Developing Software Products and Ser-
vices, Version 3.1, September, 2008, http://download.microsoft.
com

36. Darimont, R., Lemoine, M.: Goal-oriented analysis of regulations.
In: Proceedings of the CAISE06 Workshop on Regulations Mod-
elling and their Validation and Verification (ReMo2V ’06). Lux-
emburg, 5–9 June 2006. http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-241

37. Islam, S., Dong, W.: Security requirements addressing secu-
rity risks for improving software quality. In: Workshop-Band
Software-Qualitätsmodellierung und -bewertung (SQMB ‘08),
Technical Report TUM-I0811, Technische Universität München,
2008, Munich, Germany (2008)

38. Islam, S., Jürjens, J.: Incorporating security requirements from
legal regulations into UMLsec model, Modelling Security Work-
shop (MODSEC08). In: Association with MODELS ’08, Toulouse,
France, September (2008)

39. Ghanavati, S., Amyot, D., Peyton, L.: Towards a framework for
tracking legal compliance in healthcare. In: Krogstie, J., Opdahl,
A.L., Sindre, G. (eds.) 19th International Conference on Advanced
Information Systems Engineering (CAiSE’07), pp. 218–232.
Springer, Berlin (2007)

40. Breaux, T.D. Vail, M.W., Antón, A.I.: Towards regulatory compli-
ance: extracting rights and obligations to align requirements with
regulations. In: Proceedings of the 13th IEEE International Con-
ference on Requirement Engineering (2006)

41. Breaux, T.D, Antón, A.I.: Analyzing regulator rules for privacy and
security requirements. IEEE Trans. Softw. Eng. 34(1), 5–20 (2008)

42. Breaux, T.D., Antón, A.I.: Deriving semantic models from privacy
policies. In: IEEE 6th Workshop on Policies for Distributed Sys-
tems and Networks, Stockholm, Sweden, pp. 67–76 (2005)

43. Hohfeld, W.N.: Fundamental legal conceptions as applied in judi-
cial reasoning. Yale Law J. 23(1) (1913)

Author Biographies

Shareeful Islam is currently a
Ph.D. student at the research
group Software and System
Engineering, Institut für Infor-
matik (I4) of the Technische
Universität München, Germany.
He received the M.Sc. degree
in Information Communication
System Security from the Royal
Institute of Technology / Stock-
holm University in 2004. He also
received M.Sc. degree in Com-
puter Science and B.Sc. (Hon’s)
in applied physics and electron-
ics from the University of Dhaka,

Bangladesh in 2000 and 1998. He completed the ISO 9001:2001 lead
auditor certification. Before starting his Ph.D., he worked as an Assistant
Professor at the Institute of Information Technology (IIT), University
of Dhaka, Bangladesh. His main research interests are in the field of
software development risk management and software security. Special
interests are risk management model and security requirements engi-
neering.

Haralambos Mouratidis holds
a B.Eng. (Electronics with Com-
puting Science) from the Uni-
versity of Wales, Swansea, UK
and M.Sc. (Data Communica-
tions) and Ph.D. (Secure Soft-
ware Engineering) degrees from
the University of Sheffield, U.K.
Dr. Mouratidis is Principal Lec-
turer in Secure Systems and
Software Development at the
School of Computing, Informa-
tion Technology and Engineer-
ing (CITE), University of East
London. His research interests

are related to security requirements engineering, secure information
systems development and methodologies and methods for secure soft-
ware systems. He has been involved in the organisation of national and
international events related to his research interests as General Chair
(e.g. SASEMAS), Programme Chair (e.g. AOIS, AC&T, ICGeS), and as
Programme Committee member (e.g. CAiSE, ICEIS, SECRYPT, IEEE
IAT). He is Editor in Chief of the International Journal of Computer
Science and Security and he has reviewed for a number of journals
including IEEE Transactions on Software Engineering, the Interna-
tional Journal of Software Engineering and Knowledge Engineering,
the Software Quality Journal, the International Journal on Information
and Software Technology, the International Journal of Software and
Systems Modelling, and the Data & Knowledge International Journal.
Dr. Mouratidis is (and has been) actively involved in various inter-
national projects and collaborations and he is member of the Special
Interest Group on Secure Software Development of the Cyber Security
Knowledge Transfer Network in UK (http://www.ktn.qinetiq-tim.net).
He has hold a visiting research fellowship with British Telecom (BT)
and he has received funding from the Engineering and Physical Sciences
Research Council (EPSRC, UK), Higher Education Funding Council
for England (HEFCE)/University of East London, the Royal Academy
of Engineering and the National Institute of Informatics (NII, Japan).
He has published more than 80 referred papers in high quality jour-
nals (such as Information Systems, Computers & Security) and inter-
national conferences (such as IEEE RE, CAiSE, and ER). He is editor
of a special issue of the Requirements Engineering Journal (on Secu-
rity Requirements Engineering) and of a forthcoming book on Software
Engineering for Secure Systems: Industrial and Research Perspectives
from IGI Publishing.

Jan Jürjens is a Professor at
the Chair for Software Engi-
neering (LS 14), Department
for Computer Science, Techni-
cal University Dortmund (Ger-
many), the Scientific Coordina-
tor “Enterprise Engineering” and
Attract research group leader at
the Fraunhofer Institute for Soft-
ware and Systems Engineering
ISST (Dortmund), and a Senior
Member of Robinson College
(Univ. Cambridge, UK). He
is PI of several projects
financed by Microsoft Research

(Cambridge), British Telecom, and EPSRC, and Research Director of an
Integrated Project financed by the EU within FP7, Future and Emerging
Technologies Programme. Previously, he was a Royal Society Industrial
Fellow at Microsoft Research Cambridge and non-stipendiary Research
Fellow at Robinson College (Univ. Cambridge). Before that, he was a

123

http://download.microsoft.com
http://download.microsoft.com
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-241
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-241
http://www.ktn.qinetiq-tim.net

www.manaraa.com

394 S. Islam et al.

Postdoc at the chair for Software and Systems Engineering, TU Munich
(Germany). He holds a Doctor of Philosophy in Computing from the
University of Oxford and is author of “Secure Systems Development
with UML” (Springer, 2005; Chinese translation: Tsinghua University
Press, Beijing, 2009) and various publications mostly on computer

security and software engineering, totalling over 1500 citations. Much
of his work is done in cooperation with industrial partners including
Microsoft Research (Cambridge), O2 (Germany), BMW, HypoVereins-
bank, Infineon, Deutsche Telekom, Munich Re, IBM-Rational, Deut-
sche Bank, Allianz.

123

www.manaraa.com

Copyright of Software & Systems Modeling is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

